2012 Project X Physics Study 06/16/2012

Winston Cones for a Cylindrical WCD

Stefano Perasso

Winston Cones: Pros and Cons

Why Use Winston Cones?

Reduce # PMTs (costs) without reducing the amount of collected light

Winston Cone ~50\$

PMT ~3000\$

Largest increase in light collection among the LCs considered for LBNE (up to a factor 3)

Already successfully used in UPW in other experiments (SNO, Borexino-CTF)

R&D for optimization

Concerns

Risk of Dregradation in UPW

Light Cones limit the PMT field of view

Light Collection position dependent

May affect the FV definition

May affect the detector response, hence the event reconstruction

Materials

Winston Cone Structure: plastic (acrylic) cone + metal coating

Metals for coating: Al, Ag

Compatibility with UPW

Ag compatible: already used for many years in Borexino – CTF

Al not compatible: need of additional protective coating (light absorption)

Al protective coating: different solutions under study (based also on SNO experience)

Reflectivity

Profile

2 profiles

Off axis parabola (Winston Cones)
Ellipsoidal

Both are non imaging LCs

- Starting profile: Winston Cones
- Simulation shows that the ellipsoidal profile provides a more efficient light collection

→ switch to ellipsoidal profile

Winston Cone

First prototypes

Profile: Winston Cone

Metal Coat: Al

60° opening angle

Rmin at the edge of Photocathode guaranteed by Hamamatsu

Profile: Winston Cone

Metal Coat: Ag

60° opening angle

Rmin at the edge of Photocathode guaranteed by Hamamatsu

Profile: Ellipsoidal

Metal Coat: Al + coating

60° opening angle

Wider rmax (16.5")

Rmin at the equator

Tests at UPenn

Optimal Configuration: Source facing the PMT

Cherenkov Light Source

LC Shape Optimization for a 200 kton Cylindrical WCD

LC Profile Optimization

- Shape optimization done through simulations
 - Tuning of the ellipsoidal parameters

- Simulation program: WCSim
 - Geant4 based LBNE WCD MC program

- 2 stage simulation
 - Identification of the best LC profile
 - Check of its impact on the detector response

Simulation of the PMT photocathode

Included in the simulation:
 QE vs position angle on the photocathode
 PMT photocathode elliptical profile

From Specs (Hamamatsu)

In WCSim

Criteria for Selecting the Best Profile

- Gain as independent on incident angle as possible
- Reflected light as little as possible
- Opening angle as high as possible

Avoid shadow effect at large incident angles → negative effect for events at the FV boundaries

LBNE Constraint: Gain > 1.4

BUT simulations show that the detector response is not worsened if this condition is not strictly met

LBNE Benchmark

Reproduce SK photocoverage

20% photocoverage

Use high-QE PMTs

→ 14% photocoverage

Use LCs
→ 10% photocoverage

LC Profile Optimization

- One single PMTw/ and w/o Light Cone
- Define a fine grid on half of it, ~1 m above
- Shoot N photons downwards from every vertex on the grid (fixed θ)
- Repeat for different θ (0° \rightarrow 80°; step: 10°)
- For every angle compute

Gain

Reflected Light

PMT scan

Gain and Reflected Light vs Incident Angle

 $Gain = npe_{tot}(LC) / npe_{tot}(noLC)$

This computation of the gain Includes only direct light No reflected light → good gain

Gain and Reflected Light vs Incident Angle

 $Gain = npe_{tot}(LC) / npe_{tot}(noLC)$

This computation of the gain Includes only direct light No reflected light → good gain

2nd Stage: Impact on Detector Response

- Evaluate the impact of the best LC on the detector response
- Effects on event reconstruction: check
 - Energy vs event position
 - Timing
 - PID
- Compare 2 configurations
 - 14% photocov w/o LC (benchmark) and 10% photocov w/ LC
- Samples used
 - 1 GeV mu- and e-, isotropic direction, uniform distribution on the FV

Light Collected vs Event Position

Timing

PID

electrons

0.025 0.02 0.015 0.005 0.0

muons

npe vs angle wrt particle direction

What's still to be done?

Check the impact on the detector response at the MeV level

Have a prototype produced

Test the prototype in collaboration with the UPenn group